Functional equations and martingales

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic $alpha$-functional equations

In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.

متن کامل

BMO Martingales and Positive Solutions of Heat Equations

In this paper, we develop a new approach to establish gradient estimates for positive solutions to the heat equation of elliptic or subelliptic operators on Euclidean spaces or on Riemannian manifolds. More precisely, we give some estimates of the gradient of logarithm of a positive solution via the uniform bound of the logarithm of the solution. Moreover, we give a generalized version of Li-Ya...

متن کامل

Continuous Martingales and Local Martingales

Throughout these notes, (Ω,F ,P ) will be a probability space and F := {Ft }t∈J a filtration indexed by J , where J is an interval, usually J = [0,∞). The filtration F is said to be complete if each Ft contains all sets of measure 0, and is right-continuous if Ft =∩s>t Fs . A standard filtration is a filtration that is both complete and right-continuous. A stochastic process {X t }t≥0 defined o...

متن کامل

Random fractional functional differential equations

In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.

متن کامل

Functional Ito calculus and stochastic integral representation of martingales

We develop a non-anticipative calculus for functionals of a continuous semimartingale, using an extension of the Ito formula to path-dependent functionals which possess certain directional derivatives. The construction is based on a pathwise derivative, introduced by B Dupire, for functionals on the space of right-continuous functions with left limits. We show that this functional derivative ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Aequationes mathematicae

سال: 2021

ISSN: 0001-9054,1420-8903

DOI: 10.1007/s00010-021-00807-9